螺杆式主要部件是:阳、阴转子,机体,轴承,平衡活塞及能量调节装置。压缩机的工作气缸容积由转子齿槽与气缸体、吸排气端座构成。吸气端座和气缸体的壁面上开有吸气口(分轴向吸气口和径向吸气口),排气端和气缸体内壁上也开有排气口,而不像活塞式压缩机那样设吸气、排气阀。压差供油是利用排气压力和轴承处压力的差来供油,不设置油泵,简化了润滑供油系统。喷油的作用是冷却气缸壁,降低排温,润滑转子,并在转子及气缸壁面之间形成油膜密封。
螺杆压缩机运转时,由于转子上作用着轴向力,必须采用平衡措施,通常在两转子的轴上设置推力轴承。径向轴承采用圆柱轴承,推力轴承4则用滚子推力轴承来承受转子轴向推力。由于滚动轴承的间隙比滑动轴承小,从而能减少转子啮合间隙,减少泄漏损失。吸人气体先经过电动机,冷却了电动机后进人气缸被压缩排出,在排气壳中设置除油雾器,将油滴从气体中分离出来,因此,不需要在系统中另设油分离器。采用移动滑阀方式进行压缩机输气量无级调节。
工作过程
螺杆式压缩机是靠一对相互啮合的转子(螺杆)来工作的。转子表面是螺旋形,主动转子端面上的齿形凸形(即阳转子亦是功率输人转子),从动转子端面上的齿形是凹形的(即阴转子),两者在气缸内作反向回转运动,转子齿槽与气缸体之间形成V形密封空间,随着转子的旋转,空间容积不断变化,完成吸气、压缩和排气过程。下面以一个V形工作容积为例,说明其工作过程。
吸气过程设阳转子转角为以v形齿间容积i-i为对象。i
压缩过程阳转子继续旋转,阳转子螺旋槽与阴转子另一螺旋槽(已吸满气体)连通,组成新的V形容积。此工作容积由最大值h逐渐向排气端移动而缩小,对封闭在其中的气体进行压缩,压力逐渐升高。当阳转子的转角继续增至%时,容积由卜缩小至V2,压力升至p2。
(2)容积开始与排气孔口连通,压缩过程结束,排气过程即将开始。
(3)排气过程阳转子继续旋转,与排气孔口连通的容积1一5逐渐缩小,当阳转子转角由《?2增至
当阳转子转角再增至时,组成容积1一5的阳转子螺旋槽1又在吸气端与吸气口相通,于是下一工作周期又重新开始。从以上分析可看出,两啮合转子某V形工作容积,完成吸气、压缩、排气一个工作周期,阳转子要转两转。而整个压缩机的其他V形工作容积的工作过程与之相同,只是吸气、压缩、排气过程的先后不同而已。
每个V形工作容积的最大值和压缩终了气体的压力均由压缩机结构形式参数决定,而与运行工况无关。因此,压缩终了工作容积内气体压力h下的容积V2与工作容积最大值I之比称为内容积比e,即为了适应不同运行条件,我国螺杆式制冷压缩机系列产品分别推荐了三种比值,即s分别为2.6、3.6、5,供高温、中温和低温工况选用。这一点在选择螺杆式压缩机时应予以注意。
螺杆式压缩机的实际排气量低于它的理论排气量,其主要原因是螺杆之间及螺杆与机壳之间的间隙引起的气体泄漏。螺杆式压缩机的容积效率(类同于活塞式压缩机的输气系数)一般在0.75~0.95之间,大于湘同压力比下的活塞式压缩机,机械效率为0.95~0.98,指示效率(也称为内效率)约为0.72~0.85之间。
能量调节
单螺杆泵压缩机的能量调节多采用滑阀调节,其基本原理是通过滑阀的移动使压缩机阳、阴转子齿间的工作容积,在齿面接触线从吸气端向排气端移动的前-段时间内,仍与吸气口相通,使部分气体回流至吸气口,即减少了螺杆有效工作
长度达到能量调节的目的。滑阀可通过手动、液动或电动方式使其沿着机体轴线方向往复滑动。若滑阀停留在某一位置,压缩机即在某一排气量下工作。
滑阀能量调节的原理图。其中图2-20a为全负荷工作时的滑阀位置,此时滑阀尚未移动,工作容积中全部气体被排出。图2-20b则为部分负荷时滑阀位置,滑阀向排气端方向移动,旁通口开启,压缩过程中,工作容积内气体在越过旁通口后才能进行压缩过程,其余气体未进行压缩就通过旁通口回流至吸气腔。这样,排气量就减少,起到调节能量的作用。
一般螺杆制冷压缩机的能量调节范围为10%~100%,且为无级调节。在能量调节过程中,其制冷量与功耗。显然,螺杆式制冷压缩机的制冷量与功率消耗,在整个能量调节范围内不是正比关系。当制冷量为50%
以上时,功率消耗与制冷量近似正比例变化,而在低负荷下则功率消耗较大。因此,从节能考虑,螺杆式制冷压缩机的负荷(即制冷量)应在50%以上的情况下运行为宜。